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Abstract. Minimal path approaches for image analysis aim to extract
curves minimizing an energy functional. The energy of a path corre-
sponds to its weighted curve length according to a relevant metric func-
tion. In this study, we design a binary isotropic metric model with the
use of a Hessian-based vascular enhancement filter in order to extract
geometrical features from vascular networks. We introduce a constrained
keypoint search method able to extract subpixel vessel centrelines, diam-
eters and bifurcations. Experiments on retinal images demonstrated that
the proposed framework achieves similar even better segmentation per-
formances as compared with methods using more sophisticated metric
designs.

1 Introduction

Vascular networks in the human body own anatomical characteristics that are
crucial to analyse for diverse purposes, e.g. in biology for a better understanding
of the vascular architecture, or in medicine for the diagnosis of many diseases
such as vessel tortuosity based analyses [5, 15]. In Cohen et al. [9], we also showed
that the vascular anatomy represent a useful positioning landmark for neuron-
avigation and image registration. Therefore, in this paper, we aim to develop
numerical methods for accurately extracting geometrical features from the vas-
cular data, such as vessel centrelines, diameters, bifurcations, etc.

Geodesic methods for minimal path extraction in images have widely demon-
strated their worth [10, 21], in particular to extract path from tubular structures
for medical applications [13, 4]. A minimal path or geodesic joining two points
in an image is a curve that globally minimizes a well chosen energy among all
curves joining these two points. The energy of a path corresponds to its curve
length weighted by a potential or metric function. The metric assigns to every
pixel a scalar weight (isotropic case) by privileging pixels of interest like those
from tubular-vessel structures by assigning them low weights. Thus, minimal
paths preferably follows vessel structures of the image.
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The choice of the metric represents a major issue. Several authors have al-
ready proposed different types of metrics according to the type of processed
images as summarized in [21]. Isotropic intensity-based metrics favour salient
pixels according to their intensity and position only. As a consequence, mini-
mal paths can deviate and miss some vessels or take a shortcut generally due
to image noise. To overcome this problem, the metric must take into account
the geometry of vessels in order to better discriminate them. Thus, Benmansour
and Cohen [4] introduced an anisotropic metric design based on the optimally
oriented flux (OOF) filter [18] to incorporate the local orientation of vessels.

Another important issue is the way to extract the entire vascular tree. Ben-
mansour and Cohen [3] proposed a minimal path method with keypoints de-
tection (MPWKD) all along the curves of interest given a single source (start)
point. Instead of collecting many pairs of source and endpoints, a unique path
grows iteratively through the entire vascular network. However, the method suf-
fers from detection of outlier keypoints or paths due to the isotropy of the metric
and the simplicity of the stopping criterion. An improvement of the method is
proposed in [7] with the use of an OOF based anisotropic metric and a more
specific stopping criterion.

Beyond the problem of extracting relevant minimal paths, methods for quan-
tification of vascular networks require also the paths to be centred enabling for
instance evaluation of vessel tortuosity, and furthermore a local estimation of ves-
sel diameters. In Li et al. [19], they solved the minimal path problem by adding
an extra dimension to the classical Fast Marching scheme [24]. They character-
ized a point by its euclidean coordinates added by the radius at this point. This
allows to extract both the centred vessel paths and the corresponding diame-
ters. Yet, despite the accuracy of the method, this one dimension higher scheme
increases computing times, a serious drawback regarding real time applications.

In this paper, we propose a minimal path based method to extract entire
vascular trees with accurate centrelines, diameters, and bifurcations, that com-
petes with the above state of the art while keeping an isotropic metric and a
classical Fast Marching scheme. This prevents from dealing with the problem
of high anisotropy ratios [20], and the numerical scheme preserves its classical
dimension.

Instead of incorporating the vessel orientation inside an anisotropic metric,
we propose to use an isotropic binary metric classifying pixels as vessel or non-
vessel. As a consequence, the extracted minimal paths are necessary constrained
to follow a priori segmented vascular structures. This binary metric can be sim-
ply obtained by thresholding a vesselness map i.e. the response of a vascular
enhancement filter. We could use any successful filter such as OOF or Hessian-
based methods [14]. We chose the most recent and efficient Hessian-based filter
introduced by Jerman et al. [16]. To centre the extracted paths and deduce the
corresponding diameters, we constrained the MPWKD method to detect only
centred keypoints and paths by using a pre-computing distance-to-boundary
map. At the end, we get a complete graph representation of vascular networks
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with subpixel precise centred vessel paths, local diameters, bifurcations, and
taking into account cycles or closed curves in the graph.

The paper is organized as follows. In Section 2, we recall some backgrounds
on the minimal path extraction method. Section 3 describes the proposed frame-
work. In Section 4, we show some experimental results on 2D retinal images from
the DRIVE database [26]. Conclusion and future works are given in Section 5.

2 Background

This study deals with 2D images for simplicity of visualization and validation of
the results but one can straightforwardly extend the method to 3D e.g. on the
basis of [13, 16]. Let Ω be a closed subset of N2 and I : Ω → [0, 1] a 2D image .

2.1 Minimal Path Extraction

Given an isotropic (scalar) potential or metric function P : Ω → R, the minimal
path γ∗ joining a source point s ∈ Ω to an endpoint e ∈ Ω is the global minimizer
of the following energy

E(γ) =

∫ 1

0

P(γ(t), γ′(t))dt (1)

among all smooth curves γ : [0, 1] → Ω joining γ(0) = s to γ(1) = e. To solve
this minimization problem, let define the geodesic distance map US : Ω → R for
any set S of source points by

US(x) = min
γ(0)∈S
γ(1)=x

E(γ). (2)

Inspired from works on the viscosity solutions of Hamilton-Jacobi equations [11,
22], Cohen and Kimmel [10] noticed that US satisfies the Eikonal equation and
used the Fast Marching numerical scheme introduced by Sethian [23] to solve it.
The Fast Marching is a front propagation approach computing iteratively the
values of US in increasing order from the source points verifying

US(s) = 0 , ∀s ∈ S. (3)

Thus, γ∗ can be easily extracted by performing a gradient descent on US from e
to s.

To get a more accurate numerical solution for US , we prefer to use the nu-
merical scheme introduced by Tsitsiklis [27] also detailed in [17].

2.2 Automatic Keypoint Detection

In the previous section, the user needs to provide source and endpoints. When
dealing with complex tubular structures with many bifurcations like vascular
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networks, we need an automatic procedure. The Benmansour and Cohen [3]
method (MPWKD) has the benefit to extract automatically from one single
source point several successive minimal paths following the entire tree structure.
This is achieved by iteratively detecting keypoints along the tree and at each
iteration tracing back to the previous keypoint by gradient descent on US (see
also [19]).

The criterion to detect a keypoint is based on the computation of the eu-
clidean distance map LS in parallel with the geodesic distance map. Starting
from the source points S = {s0, ..., snS} with US(s) = 0 and LS(s) = 0 for
all s ∈ S, the front propagates according to the Fast Marching algorithm with
metrics P and P̃ = 1 respectively for US and LS , until a point p0 satisfying
LS(p0) ≥ λ is designated as a new keypoint. The crucial part of the algorithm
is now to update US(p0) = 0 and LS(p0) = 0 so that p0 becomes also a new
source point and S ← S ∪ {p0}. This process is iterated to obtain a set of
keypoints {s0, ..., snS , p0, .., pnK} until the total euclidean distance LTS reaches
another given parameter λT . The computation of LTS follows the Fast Marching
procedure with a unit potential as for LS but without updating its values at
each iteration.

The US ,LS update step modifies the natural propagation of the front. To
correct and update the modified values of the front, a Voronoi index map V :
Ω → N, computed in parallel of US , is defined for a current set of source points
S as

∀x ∈ Rj , V(x) = j (4)

where

Rj =
{
x ∈ Ω , Usj (x) ≤ Usi(x) , ∀i ∈ {1, ..., nS} , i 6= j

}
(5)

Every detected keypoint j has its own Voronoi region Rj containing its closest
points according to geodesic distance. When a keypoint is detected, the algorithm
continues to update the US ,LS values in Rj as detailed in [3].

2.3 Hessian-Based Vascular Enhancement Filtering

A well-known local approximation of a vessel consists in a tube elongated in
the direction of the vessel and with a Gaussian profile in its orthogonal plane.
Let denote by λ1, λ2 with |λ1| ≤ |λ2| and v1, v2 respectively the two eigenvalues
and two eigenvectors of the Hessian matrix at the centre of such 2D tubular
structure. One can notice that v1 is aligned with the direction of the vessel
and v2 with its normal direction, and the eigenvalues verify |λ1| � |λ2|. The
design of an enhancement function or vesselness map F : Ω → R based on
the last property allows to characterize vascular structures in an image. As well
summarized in [16], many authors have proposed different variants for F e.g.
Frangi et al. [14]. Very recently, Jerman et al. [16] improved the state of the
art methods by designing a more robust enhancement filter. They proposed to
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regularize λ2 as follows

λρ(σ) =


λ2 if λ2 > τ max

x∈Ω
λ2(x, σ)

τ max
x∈Ω

λ2(x, σ) if 0 < λ2 ≤ τ max
x∈Ω

λ2(x, σ)

0 otherwise

(6)

where τ ∈ [0, 1] is a threshold parameter and σ is the standard deviation of the
Gaussian used to compute the Hessian image. In fact, the Hessian of the image
is computed on a Gaussian scale space by convolving I with second derivatives
of Gaussian. Then, they defined the scale dependent version of F by

Fσ =


0 if λ2 ≤ 0 or λρ ≤ 0

1 if λ2 ≥ λρ/2 > 0

λ22(λρ − λ2)
(

3
λ2+λρ

)3
otherwise

(7)

Finally, F is obtained for all x ∈ ω by

F(x) = sup {Fσ(x) , σmin ≤ σ ≤ σmax} . (8)

3 The Proposed Minimal Path Based Framework

3.1 Binary Metric Design

In vessel extraction applications, an isotropic metric is a function of the image
value that must assign low values to vessels. On real images like retinal ones, the
keypoint detection method (section 2.2) with classical isotropic metric models
(as described e.g. in [21, 13]) generally produces many outlier keypoints. Indeed,
those simple models only consider pixel intensities without any a priori knowl-
edge on vascular structures leading to false positive detection. Therefore, before
solving the minimal path problem, we pre-process the image with a vascular
enhancement filter and threshold the obtained vesselness map F with thresh-
old parameter δ to get a binary mask Fδ depicting the segmented vessels. This
mask is then used to design a binary metric Pb as follows: the background is put
to infinity in order to stop the front propagation at vessel boundaries, whereas
the vascular shape is equipped with a unit metric. This constrains the minimal
paths to lie only on vascular patterns without any use of sophisticated stopping
criteria and anisotropic models.

The vascular enhancement filter used is the filter introduced by Jerman et
al. [16] as described in section 2.3. Figure 1(b) and 1(c) respectively illustrate
the problem of false positive keypoints when using an intensity-based metric of
the form P = P0 + |I − c| with c an approximate value of the vessel pixels, and
the improvement result with the binary metric Pb.
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(a) (b) (c)

Fig. 1: (a) Original cropped retinal image. (b) Outlier keypoints with an
intensity-based isotropic metric. (c) The proposed solution using an Hessian-
based binary metric.

3.2 Centred Keypoint Detection

If we apply the keypoint detection algorithm directly with Pb, some problems
may persist. First, the paths are not necessarily centred as observed on Figure
1(c). Secondly, outlier keypoints may appear inside the mask for small values of
the parameter λ (see section 2.2) as shown Figure 2 on a synthetic example. Thus,
we propose to constrain the MPWKD at the centre of vessels. The algorithm
now designates a point p as a keypoint if p satisfies two conditions:{

LS(p) ≥ λ as in 2.2

p lies on a vessel centreline
.

(a) (b)

Fig. 2: Outlier keypoints problem with the MPWKD on a binary metric (left).
The proposed solution is on the right.

To check that p lies on a centreline, we compute the skeleton of Pb and check
if p is inside. The skeleton can be approximated for instance by thresholding the
gradient magnitude of the distance-to-boundary map D : Ω → R+

Skeleton = {x ∈ Ω , ‖∇D‖ ≤ τs}. (9)
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Indeed, maxima of D are reached at centrelines with very small values of ‖∇D‖.
Decreasing τs makes the skeleton thinner but too small values may ignore some
branches. As explained in [13], to compute D, two different front propagations
using the Pb metric are needed. The first one starts from one source point inside
the vascular shape, and because of the infinite background, the front is auto-
matically frozen at vessel boundaries. Then, those boundary points are used as
source points in a second front propagation whose resulting geodesic distance
map US is exactly the desired distance-to-boundary map D.

Once the keypoint detection has been constrained on the skeleton, no more
outlier keypoints should appear. However, the presence of noise on the bound-
aries of Pb can induce some errors in the skeleton such as new outlier branches as
described in [1]. Fortunately, keypoints are extracted along the skeleton with a
quasi constant spacing equal to λ. This avoids to select outlier keypoints close to
the boundary by choosing λ greater than typical radius values inside the vascular
shape.

Regarding the extracted minimal paths, they still remain not centred. There-
fore, similarly to [13], instead of using Pb we propagate the MPWKD with a new
metric function based on D defined by

Pc =

{
+∞ in the background (Pb = +∞)

P0 + e−αD elsewhere (Pb = 1)
(10)

where α ∈ R+ controls the exponential. Thus, the lowest metric weights are
attributed to centrelines (high values of D) and the extracted minimal paths are
constrained to lie on centrelines as well. Figures 3(a)-(g) illustrates the proposed
centred keypoint detection method on a synthetic example.

Note that Pb and Pc may contain different sets of connected pixels describing
the entire vascular structure. In this case, we apply the method with multiple
source points arbitrary selected inside each set of pixels.

3.3 Cycles and Graph Representation

An important assumption of the Fast Marching is that US can only increase
with the front propagation. As a consequence, if a keypoint p has been already
detected and its US value frozen to zero, all the next detected keypoints will be
different from p. Thus, the centred MPWKD described in the last section is still
unable to extract closed curves. This can be observed on Figures 3(g) and 4(a)
where five pairs of keypoints remain unconnected, while the synthetic tubular
shape is constituted of five cycles (or loops) needing to be closed.

The problem of detecting cycles in vascular networks is particularly impor-
tant to characterize specific vascular anomalies encountered for instance in tu-
mours where the excessive formation of new vessels can lead to the apparition
of cycles [12]. Therefore, cycles detection must be incorporated in the proposed
framework especially for 3D applications, whereas in 2D images some cycles may
be caused by the superposition of vessels inducing wrong bifurcations. The prob-
lem of 2D wrong bifurcations is not addressed in this study but solutions may
be found for instance in [2].
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3: Centred keypoint detection. (a) Original synthetic tubular binary image.
(b) Boundaries detection (in white). (c) Distance to boundary map D (high
values in red). (d) Pc metric. (e) Skeleton. (f) Geodesic distance map US com-
puted by centred keypoint detection. (g) Centred keypoint detection result. (h)
Diameters and graph representation (bifurcations and leaves resp. in green and
blue)

The notion of cycles leads us to represent vascular networks as graphs with
nodes and edges. The keypoint detection method is by construction a tree struc-
ture approach where keypoints are the nodes and the extracted minimal paths
are edges. When a keypoint p1 is originated from the keypoint p0 i.e. the minimal
path extracted by the detection of p1 has reached after gradient descent on US
the keypoint p0, we say that p0 is the father of p1, and p1 the child of p0. Let
notice that a keypoint cannot have more than one father. We also define a leaf
by a keypoint that has no child, and a bifurcation by a keypoint with at least
two children. A keypoint with only one child is not considered as a node but as
a sample point of a minimal path joining two nodes. Regarding source points,
they must be carefully treated. With one, two or more than three children, a
source point is considered respectively as a leaf, a sample point, or a bifurcation.

On Figure 4(a), we notice that keypoints with missing connections are all
leaves. We begin by identifying them. Among all leaves, we keep only pairs of
keypoints {(s1, e1), ..., (sn, en)} (here n = 5) whose Voronoi regions have at least
one pixel in common, as shown on 4(c). Then, we propagate the Fast Marching
with the metric Pc and the si as source points. As soon as a point ei is reached
by the front, the minimal path joining ei to si is extracted by gradient descent
on US . The front stops to propagate when all the n paths have been extracted.
Finally, the n paths are added to their corresponding edges to form a complete
graph structure. The obtained result is shown on Figure 3(h) where leaves and
bifurcations are respectively coloured in blue and green.
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In some cases, two leaves may have their Voronoi Regions side by side but
there is no need to connect them. This is for example the case of some close
leaves on the synthetic tree Figure 6. To avoid such problems of outlier cycles,
we use the criterion introduced by Kaul et al. [17] to treat general closed curves.
Let f(si) be the father of si. We impose to join ei to si only if∣∣∣∣‖ei − f(si)‖ − ‖ei − si‖ − λ

∣∣∣∣ ≤ ε (11)

where ε/λ ∼ 0.2.

(a) (b) (c)

Fig. 4: Detection and closure of cycles on a synthetic tubular binary image. (a)
Centred keypoint detection result. (b) Voronoi index map V (low indexes in blue,
high ones in red). (c) The five pairs of neighbour leaves with their computed
connections and Voronoi regions.

3.4 Subpixel Vessel Extraction

Minimal paths γ∗ are extracted by gradient descent on US according to the
following equation

dγ∗(t)

dt
= − ∇US(γ∗(t))

‖∇US(γ∗(t))‖
. (12)

Therefore, the sampling points describing γ∗ have subpixel coordinates. This
makes the paths more smooth and regular. Nevertheless, in the keypoint detec-
tion approach, the computation of ∇US may induce some errors in the path ex-
traction. Indeed, the paths extraction is done while the map US is not completely
computed yet. Thus, some US values have still an infinite value causing troubles
in the gradient computation, such as stagnancy of the path before reaching the
source illustrated on Figure 5.

To overcome this kind of problems, we modify the classical computation of the
gradient to take into account the infinite values of US at boundaries. Let x ∈ R2

be a sampling point of γ∗. The gradient ∇US(x) at x is computed by bilinear
interpolation from the 4 pixel neighbours of x. Let pi,j ∈ Ω (line i, column j)
be a pixel neighbour of x, and pmin the neighbour of pi,j with the smallest US
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value. If US(pi,j) = +∞, we impose the coordinate of ∇US(pi,j) in the direction
of pmin to be 1 and the other coordinate to be 0. Otherwise, we look at the 4
neighbours of pi,j . For instance in the vertical direction, if US(pi−1,j) = +∞ or
US(pi+1,j) = +∞, then ∂xUS(pi,j) is computed respectively by a forward or a
backward finite difference; if both US(pi−1,j) = +∞ and US(pi+1,j) = +∞, then
∂xUS(pi,j) = 0; otherwise, we use a central finite difference. We do the same
in the horizontal direction. At the end, if ∂xUS(pi,j) and ∂yUS(pi,j) are both
very close to zero, we impose to move in the direction of pmin as for the case
US(pi,j) = +∞. We repeat this procedure for each neighbour of x and then we
can interpolate.

Fig. 5: Stagnation of the gradient descent before reaching the source point on a
retinal image example. The path is superimposed on the geodesic distance map
US with low and high values respectively in blue and yellow.

3.5 Vessel Diameter Estimation

From the distance-to-boundary map D, we can estimate vessel diameters. At
a sample point x belonging to a centred minimal path, the local diameter can
be defined by 2D(x). Since minimal paths are subpixel curves whereas D is a
pixel mapping, we interpolate D(x) by a bilinear interpolation on the 4 pixel
neighbours of x. This local diameter estimation is realized for every edge of the
extracted graph. Figure 6 illustrates the performance of the proposed framework
respectively on a synthetic tree and a cropped retinal image.

4 Experiments on Retinal images

The proposed framework was tested on the DRIVE database [26] composed of
40 retinal images. The database is divided in two sets of 20 images for training
and test. For each image, a manual segmentation serves as groundtruth and a
mask delineating the FOV (field of view) is also available. For the test set, two
manual segmentations are provided.
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Fig. 6: Illustration of the method on a synthetic tree (left) and a cropped reti-
nal image (right). Top line: original images. Bottom line: our vessel extraction
method; high diameters are in yellow/red, low ones in blue/green; bifurcations
and leaves are respectively in green and blue.

To evaluate the results, we first measure the accuracy of the segmentation
results, i.e. the sum of the true positive and true negative pixels divided by
the number of pixels in the FOV. The training set is first used to estimate the
optimal values of parameters τ in Equation (6) and δ in Section 3.1. We found
(τ, δ) = (0.25, 0.9) by maximizing the average accuracy of the training images.
The other main parameters are fixed to σ = {0.1, 0.2, ..., 2.9, 3}, λ = 5, P0 = 0.1,
α = 0.5, τs = 0.5, ε = 0.2λ.

For each test image, two segmented images are evaluated. The first one is the
thresholded vesselness map Fδ introduced by Jerman et al. [16], and the second
one is a segmented image reconstructed from vessel centrelines and diameters
extracted with the proposed framework. With Fδ, we evaluate the performance
of the vascular enhancement filter used [16]. With the reconstructed image, we
evaluate the accuracy of the vessel centrelines and diameters extracted by our
method. Figure 7 shows the different segmented images from the test image
giving the maximal accuracy.

Results on test images are presented in Table 1. We compare our result
with two other methods, Benmansour and Cohen [4] and Chen and Cohen [6],
where an anisotropic metric and a one dimension higher numerical scheme for
estimation of the diameters are used as detailed in Section 1. Their performance
measures were taken from [6]. We used the same experimental conditions: only
the second manual segmentations are used as groundtruth and the FOV mask is



12

eroded by 11 pixels to remove the effect of the FOV boundary on Fδ. With higher
maximal and average accuracies than [4] and higher maximal accuracy than
[6], we see the pretty good performance of our reconstruction from centrelines
demonstrating the quality of our vessel extraction method, even if we used an
isotropic metric model and a classical numerical scheme. Also, the advantage of
pre-segmenting the images with the Jerman et al. [16] filter is clearly pointed
out by its outperformance.

(a) (b)

(c) (d) (e)

Fig. 7: Best result of the proposed framework on the DRIVE test dataset. (a)
Original test image. (b) Groundtruth. (c) Thresholded vesselness map Fδ with
the Hessian-based filter [16]. (d) Centrelines and diameters with the proposed
method. (e) Segmented image reconstructed from (d).

Because of the large number of negatives in the background of segmented ves-
sel images, as explained in [25], we usually prefer sensitivity (recall) and precision
to measure vessel detection performance. Therefore, we plot on figure 8-left the
sensitivity of our results as a function of (1-precision) for all test images. We see
how the points corresponding to Jerman and to our reconstruction lie closely to
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Table 1: Accuracy measures on the 20 retinal images of the DRIVE test dataset.

Methods Maximum Minimum Average Standard deviation

Benmansour and Cohen [4] 0.947 0.927 0.9372 0.0054
Chen and Cohen [6] 0.949 0.930 0.9397 0.0052
Jerman et al. [16] 0.954 0.924 0.9410 0.0096
Our reconstruction from centrelines 0.951 0.923 0.9382 0.0089

the first manual segmentations of the DRIVE dataset, except few images with
lower sensitivity. We also observe that our centrelines reconstruction algorithm
lacks of sensitivity comparing to Jerman. This is due to some unreconstructed
small vessel branches. However, its performance remains enough similar to Jer-
man to ensure that centrelines are pretty well extracted. On figure 8-right, a
ROC curve whose points correspond to several values of parameters (τ, δ) ap-
plied on the first test image illustrates a performing profile.

Fig. 8: Sensitivity vs (1-Precision) graph comparing Jerman and our reconstruc-
tion to the first manual segmentations of the DRIVE dataset. Left: each point
corresponds to one image of the test set. Right: ROC curve of the first test
image.

5 Conclusion

In this study, we showed how to design a binary isotropic metric with vascular
a priori knowledge and introduced a new centred keypoint detection method to
accurately extract centrelines, diameters and bifurcations of a vascular network.
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This framework has the advantage to use the classical minimal path based meth-
ods and in the same time to produce performance being similar even better to
the recent methods as shown on the retinal images DRIVE database. Besides,
it can easily be extended to 3D. As future works, the robustness of the pro-
posed graph description of vascular networks to outlier bifurcations and outlier
cycles should be studied. Also, the proposed framework will be applied on 3D
ultrasensitive Doppler images to improve our recent results presented in [8].
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