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Abstract Ultrasensitive Doppler is a recent medical imaging technique enabling
high sensitive acquisition of blood flows which can detect small vascular features
without contrast agents. Applied to cerebral tomographic imaging of rodents, this
method produces very fine vascular 3D maps of the brain at high spatial resolution of
100 µm. These vascular networks contain characteristic tubular structures that could
be used as landmarks to localize the position of the ultrasonic probe and take advan-
tage of the easy-to-use property of ultrasound devices. In this study, we propose a
computational method that performs 3D extraction of vascular paths and estimates
effective diameters of vessels, from Ultrasensitive Doppler 3D reconstructed im-
ages of the rat brain. The method is based on the Fast Marching algorithm to extract
curves minimizing length according to a relevant metric.

1 Introduction

1.1 Context

Medical ultrasound imaging has become a major clinical technique achieving an
anatomical imaging of high quality, usually associated to a Doppler examination for
blood flows observation and quantification. Ultrasound devices are also very con-
venient tools thanks to their portability, real time working and low-cost. Today, the
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observation of very fast variations in the human body like mechanical waves prop-
agation [8] or fast blood flows [2] is possible by ultrafast ultrasound imaging. In-
stead of using line-per-line focusing of ultrasonic beams like in standard ultrasound
imaging, ultrafast imaging uses ultrasonic plane-wave transmissions associated to
the power of graphical processing unit based platforms, in order to accelerate typi-
cal frame rates to more than 1000 frames per second [12]. Ultrasensitive Doppler is
one of these new ultrasensitive techniques which allows high sensitive acquisition
of small vascular features without contrast agent.

Ultrasensitive Doppler imaging produces very fine 3D vascular maps of the ro-
dent brain with high spatial resolution. The acquisition is realized in vivo thanks to
a simple mechanical system described in [6]. A mechanical scanning process ac-
quires successive 2D sections along the rodent brain surface for several different
orientations. Using a tomographic approach, a post-processing treatment of the data
reconstructs a real 3D volume of the cerebral vascular network.

1.2 Motivations

The cerebral vascular network may serve as landmark in the brain for many pur-
poses: real time neuronavigation, neurosurgery monitoring, brain tumor monitoring,
etc. For instance, in Cohen et al. [3], we have proposed such a system to neuronavi-
gate the rodent brain in real time. We successfully registered different ultrasensitive
Doppler 3D scans using the cerebral vascular print as a matching feature. The algo-
rithm used compares 2D brain sections by correlation, demonstrating the amount of
positioning information contained by the ultrasensitive Doppler signal. Besides, this
new real time neuronavigation system based on ultrasounds is of great interest given
the easy-to-use properties of ultrasound devices: portability, real time, low cost, etc.

Consequently, we envisage to extract some geometric features characterizing the
cerebral vascular network from ultrasensitive Doppler 3D images. Indeed, a finer
description of the vascular print will lead to a better understanding and analysis

Fig. 1 Ultrasensitive Doppler imaging of the rat brain. Left: 2D ultrasensitive Doppler coronal
plane. Right: 3D tomographic reconstruction [6].
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of the vasculature; in addition, it will serve as a more accurate matching feature
in all registration tasks aiming to find invariant cerebral vascular structures. In the
present study, we propose a computational method that performs 3D extraction of
vascular paths from tomography based 3D reconstruction of the rat brain by ultrafast
ultrasound imaging [6]. In order to distinguish between small and large vessels, the
method also enables the estimation of vessel diameters.

2 Material and methods

2.1 Material

In vivo experiments were performed on anesthetized rats using ultrasensitive Doppler.
Ultrafast ultrasonic imaging enables fast acquisition of brain sections at 100µm×
100µm resolution in the image plane. A 15MHz motorized probe acquires 400µm-
thick brain sections with 200µm spacing. A typical 3D scan of the total width of the
rat brain along one specific direction contains around 65 sections. A tomographic
reconstruction can be achieved from several scan acquisitions along 18 different ori-
entations, to obtain 3D high spatial resolution volume of around 200× 300× 300
pixels of size 100µm×100µm×100µm. A complete description of the experimen-
tal set up can be found in [6].

2.2 Minimal path extraction

The problem of extracting the minimal path between two points x0,x1 ∈ Ω ⊂ Rd

(d = 2,3) in an image consists in finding the curve joining them and following the
shortest possible path. The definition of a shortest path is generally associated to
the Euclidean metric (or distance) de(x0,x1) = 〈x1−x0,x1−x0〉1/2 leading to the
segment joining x0 and x1 for the minimal path. However, in an image, a segment

Fig. 2 Illustration of the minimal path extraction technique used on a 2D retina image. From left
to right: the original image; the geodesic distance map corresponding to the red start point; the
minimal path solution with the blue point as destination.
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does not generally suite to represent the path between two points (see for instance
the extraction of a retina vessel on figure 2).

Therefore, one can introduce a Riemannian metric that locally depends on the
pixel intensity in order to make shortest paths depend on the most salient variations
of the image, as it is well explained in [10]. Let γ : [0,1]→ Rd be a smooth curve
joining γ(0) = x0 to γ(1) = x1, a Riemannian metric or geodesic distance can be
defined as

d(x0,x1) = min
γ

L(γ),

where L(γ) is the Riemannian curve length of γ , and is given by

L(γ) =
∫ 1

0

〈
γ
′(t),W (γ(t))γ ′(t)

〉1/2 dt.

As expected, the metric is now a function of a saliency map W : Rd → R called
potential, that should be chosen low in the image areas to be extracted. In general,
W is a symmetric positive tensor field of Rd×d but we restrain our study to the
isotropic case. In fact, to extract vessels, we will build W from the intensity of the
blood flow which is a scalar function of the 3D space.

From then on, the minimal path extraction problem is to solve the following
minimization problem

γ
∗ = argmin

γ

L(γ). (1)

Given any set S of start points, one can define the geodesic distance map by

US(x) = min
x0∈S

d(x0,x).

As described in [4, 10], if we manage to compute US, the solution of the problem
(1) satisfies the following gradient descent

dγ∗(t)
dt

=− ∇US(γ
∗(t))

‖∇US(γ∗(t))‖
. (2)

Fig. 3 Illustration of the min-
imal path extraction technique
used on a 3D synthetic helical
structure. The start and desti-
nation points are respectively
chosen at the bottom and
top of the helice. The color
map follows the values of the
geodesic distance map.
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The computation of US is a more complicated. From results on the viscosity solution
of the Hamilton-Jacobi equation [5, 10], it can be proved, under assumptions of
compactness and continuity respectively for S and W , that US is the unique viscosity
solution of the Eikonal equation{

‖∇US(x)‖=W (x),∀x ∈Ω

US(x) = 0,∀x ∈ S
. (3)

Some geometric interpretations can also be found in [4] and serve as elements of
proof for better understanding.

To solve numerically the Eikonal equation, we use the Fast Marching Method
(FMM) introduced by Sethian [11] and we follow the numerical scheme presented
in [7] for 3D images (d = 3). The FMM is a front propagation approach computing
iteratively the values of US in increasing order. Then, we extract γ∗ by using a simple
discrete gradient descent to solve (2) avoiding angular error accumulation [4]: from
the destination point x1, the back propagation follows the direction of the lowest US
value of a regular neighbor grid around the current iteration point, until the first start
point x0 is reached i.e. as soon as US(x) = 0.

Illustrations of the method just described in 2D and 3D are shown on figures 2
and 3.

2.3 Iterative keypoint detection

In the case of vessel extraction and particularly when a large amount of vessels
constitutes a complex vascular network, it is convenient to extract the desired vessels
from a unique start point. Indeed, because of bifurcations of vessels, it would require
many different unknown pairs of start and destination points of the minimal path
extraction method described just before.

Therefore, we use the Minimal Path method With Keypoint Detection (MPWKD)
introduced by [1]. From a single start point x0 and given a parameter λ , intermediate
points, called keypoints, are successively detected along the curve of interest with
a spacing between them almost constant to λ . Another advantage of this method
is the influence of λ on the path when the potential is too noisy or not enough
contrasted; in this case, small values of λ can prevent minimal path solution from
wrong shortcuts to the start point [1].

Like FMM, the MPWKD algorithm is based on minimal path extraction tech-
nique described in 2.2. The geodesic distance map Ux0 is first computed until the
front reaches a keypoint p0 with an Euclidean distance higher than λ . Then, the
front continues to propagate considering p0 as a new start point, i.e. S = {x0,p0}
and US(p0) = 0, until a new keypoint p1 again with an Euclidean distance higher
than λ . The algorithm iterates this procedure until the approximated total Euclidean
length of the path is higher than a second parameter L to obtain a quasi equidistant
set of keypoints pi. The Euclidean distance map is computed just as the geodesic by
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solving (3) with W (x) = 1 for all x ∈ Ω . The extraction of the total minimal path
is performed at each iteration after which a new keypoint is detected by the same
simple gradient descent on US as in 2.2. The MPWKD is also taking into account
the number of adjacent Voronoi regions in order to extract the correct path.

2.4 Vessel effective diameter estimation

From the previous analysis, the obtained minimal path extraction can be viewed as
a graph representation of the vascular network. The keypoints would be the nodes
of the graph and an edge would be defined by the path connecting two successive
keypoints. This graph description may be particularly useful to compare different
cerebral vascular networks.

As a first step leading to a suitable graph representation of the cerebral vascular
network, we propose to distinguish vessels according to their effective diameters.
Indeed, the size of the vessels is a crucial feature useful to characterize different
kind of vascular structures in relation with some physiological parameters such as
blood flow velocity, pressure, etc. In the context of ultrafast Doppler imaging, due
to the physics of ultrasound devices, the observed size of vessels is not rigorously
their real size. That is why we will deal here with effective diameters of vessels.

The previous extracted minimal paths are supposed to be localized inside the
vessels, even if they are not a priori centered on their centerlines [10]. Thus, at
each point of the extracted minimal paths, one can consider the orthogonal plane
to the vessel and passing through this point. In this plane, if we model a vessel
by a curvilinear and tubular structure, the point of interest should be located inside
a group of pixels fitting an ellipse. The vessel diameter is then estimated by the
characteristic size of the latter ellipse.

Computing the orthogonal plane requires to know precisely the local orientation
of the vessel. A simple faster method consists in considering the best approximation
of the orthogonal plane among the local coronal, sagittal and horizontal sections.
This is done by fitting an ellipse or basically a circle in each of those three planes
and selecting the smallest one as the correct circle estimate (see figure 4); in fact,

Fig. 4 Vessel effective diameter estimation method. From left to right: coronal, horizontal and
sagittal planes that locally intersect the minimal path at the red point. In this example, the smallest
fitted circle is on the coronal plane.
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the two other bigger estimates fit actually non-circular structures revealing the non-
orthogonality to the vessel. Finally, the center of the fitted circle allows to recenter
the point of interest and thus the minimal path at the center of the vessel.

3 Results and discussion

In order to show the efficacy of the proposed method, we first apply it on a 2D
coronal plane of the rat brain (fig. 6), obtained by averaging 30 successive coronal
sections of the 3D ultrafast Doppler tomographic reconstruction presented in 2.1.
A Doppler image shows the intensity of the blood flow which is maximal at the
center of the vessels. Therefore, the metric should be simply chosen as an inversely
proportional function to the image. A first simple and successful model corresponds
to W = 1/I where I is the 2D or 3D ultrafast Doppler image. Before launching the
keypoints detection algorithm (see 2.3), one must take into account the image back-
ground the presence with many pixels of very low intensity that do not correspond
to vessels. Otherwise, the MPWKD finds many outlier keypoints. The left image
of figure 5 illustrates this over-detection result. Then, the middle image shows the
MPWKD performance after a thresholding of the data: a large part of the vascular
network is well extracted revealing the importance of the pre-processing segmen-
tation step of the image. The right image shows how to get better performance by
performing before the thresholding step a histogram equalization based on [13] in
order to increase the contrast and then enhance vascular structures. This time, al-
most all the 2D vascular tree is extracted even the deepest vessels of the brain. In all
these simulations, the start point from which the MPWKD starts the keypoint detec-
tion is red colored and chosen in an image area of highest intensity like the vertical
central vessel located on the symmetry axis of the brain. One can appreciate the en-
hancement of the vascular structures of the image on figure 6. The two last images
of figure 6 show the Euclidean distance map updated at each keypoint detection and
the approximated total Euclidean length.

Fig. 5 Minimal path extraction with keypoint detection in 2D. From left to rigth, the method
is applied to: original image; image after thresholding; image after thresholding and histogram
equalization. Start points, keypoints, and minimal paths are respectively marked in red, yellow,
and cyan.
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The proposed method was then tested in 3D on a tomographic reconstruction of
the rat brain (see 2.1). In real 3D data, the observed vascular structures are much
more consistent with the real vasculature, which was not the case in 2D average
of several successive planes where wrong superimposition and then bifurcations of
vessels could appear. That is why the MPWKD produces a very nice 3D vascular
network extraction even without thresholding of the data (fig. 7). One can observe
the profusion of extracted vessels in particular the high number of short vessels that
makes difficult the physical interpretation and validation of the result. In order to
refine the extraction, a pre-processing step to segment the more significant vascular
structures can be applied. For instance, we used the Optimally Oriented Flux (OOF)
filter proposed by [9] for curvilinear structure detection. Figure 8 illustrates the 3D
segmentation of the data by OOF. Many noisy pixels are changed to zero and the
surface of vessels is more accurately delimited. However, when the MPWKD is
directly applied on the segmented volume, fewer keypoints are detected and one
may repeat the keypoint detection algorithm from different start points to get the
whole vascular tree.

The OOF filter is particularly useful for the vessel effective diameter estimation
(see 2.4). Indeed, in order to get consistent circle fitting like on figure 4, the vessel
section containing the red point should be composed of almost exclusively pixels
of interest, since the algorithm estimating the diameter only counts those pixels to
define the area of the vessel section. If this area is not well delimited, then many
outlier pixels will lead to a wrong estimated area. Thus, after delimiting vessels by

Fig. 6 From left to right: 2D ultrasensitive Doppler; thresholding and histogram equalization of
the previous image; updated Euclidean distance map; approximated total Euclidean length map.

Fig. 7 Minimal path extraction with keypoint detection in 3D. Start points, keypoints, and minimal
paths are respectively marked in blue, red, and green.
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OOF and using the vascular tree obtained by MPWKD on original data, we obtain
a color map of the estimated vessel diameters as shown on figure 9. On can observe
the profusion of small vessels that ultrafast ultrasound imaging enables to detect.

4 Conclusion

In this study, we have presented a first computational method capable of analyz-
ing the vasculature of the rat brain from 3D ultrasensitive Doppler. The proposed
method has the advantage to be really fast (tens of seconds), implementing the so-
lution with C++. Future work should improve several issues: the accuracy of the
minimal path extraction by considering anisotropic metrics and studying the influ-
ence of the distance parameter between the keypoints; the enhancement of vascular

Fig. 8 Vascular segmenta-
tion in 3D by the Optimally
Oriented Flux filter.

Fig. 9 Vessel effective diameter estimation. Left: vessel diameters of the whole extracted vascular
network. Right: vessel diameters of a partial vascular network computed by MPWKD after OOF
filtering (the forebrain is on the left of the graph). The range of the color map values is from 0
(blue) to 7 (red) pixels.
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structures to improve the quality of the extracted vascular tree; and finally, the ac-
curacy of the proposed vessel diameter estimation by considering local orthogonal
planes to vessels.
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